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Calibrated pressure measurements for species with mass-to-charge ratios up to 50 amu/e- were obtained from
the shuttle upper atmosphere mass spectrometer experiment during re-entry on the STS-35 mission. The principal
experimental objective is to obtain measurements of freestream density in the hypersonic rarefied flow flight regime.
Data were collected from 180 to about 87 kin. However, data above 115 km were contaminated from a source of

gas emanating from pressure transducers connected in parallel to the mass spectrometer. At lower altitudes, the
pressure transducer data are compared to the mass spectrometer total pressure with excellent agreement. Near the
orifice entrance, a significant amount of CO2 was generated from chemical reactions. The freestream density in
the rarefied flow flight regime is calculated using an orifice pressure coefficient model based upon direct simulation
Monte Carlo results. This density, when compared with the 1976 U.S. Standard Atmosphere model, exhibits the
wavelike nature seen on previous flights using accelerometry. Selected spectra are presented at higher altitudes
(320 km) showing the effects of the ingestion of gases from a forward fuselage fuel dump.
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Nomenclature

= atomic mass unit per unit charge

= equilibrated pressure coefficient [see Eq. (2)]

= inlet system flow restrictors (i.e., leaks)

= mole fraction of species i

= ion current of species i, A

= range valve constant; 140.0 for range valve closed

or 1.0 for range valve open

= pressure of species i, N/m e

= equilibrated pressure, N/m 2

= surface pressure, N/m 2
= total pressure due to all species, N/m 2

= freestream dynamic pressure (i.e., (1/2)p V2),
N/m 2

= sensitivity coefficient of species i, A/N/m 2
= body axes

= velocity, m/s

= inlet valve, dynamic range valve, and protection

valve, respectively
= angle of attack, deg

= sideslip angle, deg
= density, kg/m 3

= change in pressure of species i due to chemical
reactions, N/m 2

Introduction

HE main objective of the shuttle upper atmosphere mass spec-
trometer (SUMS) experiment is to obtain measurements of

freestream density in the hypersonic, rarefied flow regime during
the Shuttle atmospheric re-entry. These measurements, when com-
bined with acceleration measurements, allow the determination of
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Orbiter aerodynamic coefficients in a flow regime previously inac-

cessible to experimental techniques. This report presents the results

of analysis of flight data from the SUMS experiment taken during

the Orbiter's re-entry on the STS-35 mission. A complete descrip-
tion of the SUMS experiment is given in Ref. 1. Detailed drawings

of the flight and laboratory equipment including dimensions, cali-

brations, and other laboratory procedures are given in Ref. 2. A brief

review is given here for clarity.

Experiment Description

The main elements of the SUMS flight equipment consist of a
pressure transducer (689.476 N/m 2 or 0.1 psia), an inlet system,
and a flight mass spectrometer. As depicted in Fig. !, the pres-
sure transducer is in parallel with the inlet system, and it provides

back-up protection to the mass spectrometer in the event of valve
closure failures, as well as a source of independent pressure data
to compare with the mass spectrometer data. It is important to note
that two additional pressure transducers from a different experiment
were connected to the same orifice for a total of three transducers

connected in parallel with the mass spectrometer.

The inlet system includes stainless steel tubing connecting a fil-
ter, an inlet valve, large and small calibrated pinched tube leaks in
parallel (see C 1 and C2 in Fig. 1), and a dynamic range valve. When

the dynamic range valve closes, the gas flows exclusively through

leak C2, thereby expanding the measurement range. The mass spec-
trometer is located remotely from the inlet system within a pressure

housing that is filled with sulfur hexafluoride at 1.0 atm pressure.

A protection valve is placed in the gas line to the mass spectrome-
ter as a backup to an inlet valve failure. The physical arrangement
of the SUMS components on the Orbiter is shown schematically
in Fig. 2. Inlet tubing penetrates the Orbiter chin panel just aft of
the nose cap and connects to the inlet system after passing through
the nose wheelwell bulkhead. The inlet system is connected with

another tube to the mass spectrometer, which is mounted on the
nose wheelwell bulkhead (Fig. 2). The inlet orifice size and all rel-
evant tubing lengths are given in the schematic, Fig. 3, The inlet
orifice is constructed from Columbium (Niobium) because of its
high melting point and resistance to corrosion at high temperatures.

This port also serves as a common gas inlet for 2 of the 36 pressure
transducers that comprise the shuttle entry air data system (SEADS)
experiment) The internal tubing is constructed from stainless steel.

Temperature measurements from a sensor located in the inlet box
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Fig. 4 Typical SUMS spectra taken on STS-35.

indicated a constant temperature of about 12°C during the flight. A

more complete description of all of the components can be found

in Ref. 2. Data taken during flight are stored on a remotely located

tape recorder and downloaded after the Shuttle flight.

The SUMS mass spectrometer is a flight spare from the

Viking (Mars mission) project upper atmosphere mass spectrometer

(UAMS) experiment that has been modified to provide mechanical,

electrical, and data compatibility with the Shuttle. SUMS experi-

ment operation during flight is controlled by commands stored in

the Shuttle computer and by internal "firmware" logic. The appli-

cation of power for vacuum maintenance and for normal equipment
operation is controlled by stored Shuttle commands, and internal

MASS SPECTROMt,.'TF_R FI.IGHT RESULTS

Table 1 SUMS ionization and cracking ratios for
CO, N2, 02, Ar and CO2

563

Gas Mass, ainu Ion current ratios

Carbon monoxide. CO 28

Nitrogen, N 2 28
Oxygen, O2 32
Argon, Ar 40
Carbon Dioxide, CO2 44

/i 2128 0.024

/14128 0.012

116128 0.0056

114128 0.068

116132 0.075

120140 0.27

114144 0.0007
I1_144 0.12
122144 0.033
128144 0.06

operations, such as opening and closing valves, are performed by
the SUMS control electronics, which depend upon atmospheric con-

ditions as measured by the SUMS pressure transducer and/or mass

spectrometer.

The mass spectrometer has a mass range of 1-50 amu/e- in

increments of 0.25 ainu/e- and can measure the gases hydrogen

(H2) through carbon dioxide (CO2) at a rate of 1 scan every 5 s.

One typical 5 s SUMS measurement scan obtained near 90 km

altitude during STS-35 is shown in Fig. 4. SUMS is powered on

shortly before the initiation of de-orbit burn, and then samples the

inlet gases with the range valve open until an altitude of about 108

km is reached. At that point, the range valve closes leaving only

the small leak to transmit gas to the mass spectrometer until about

87 kin. Below 87 km, the inlet valve closes, but the mass spectrom-

eter continues to operate until landing to observe the system decay

characteristics as it is pumped down. The complete re-entry data set

on STS-35 consists of approximately 760 scans representing about a

4000 s measurement time interval. The freestream gas flow relative

to the orifice is at an angle of -29 deg when the Orbiter is at the

nominal re-entry angle of attack of 40 deg.

SUMS System Calibration

Laboratory Tests
Calibration of the instrument was accomplished in the laboratory

using a setup of specially designed ground support equipment (GSE)
connected to the flight hardware} Calibration includes introducing a
test gas to the GSE and varying pressure statically (i.e., set a pressure
and hold) as well as dynamically (i.e., vary pressure with time). The

dynamic test setup provides a method to simulate pressure changes

expected during flight. Inlet pressures are then measured (using a
sensitive Baretron pressure gauge) and compared to the resulting
ion current peaks measured by the mass spectrometer itself. The
ion current, when divided by inlet pressure, provides the sensitivity
coefficients (amps/torr) of individual gases (e.g., N2, CO, 02, and
CO2) connected to the inlet test setup. This procedure allows the

partial inlet pressure of each species to be determined from a mea-
sured ion current in the mass spectrometer during flight. Currents
were also recorded for peaks that resulted from the double ioniza-

tion or "cracking" of a molecule. Examples of these measurements
include the ion current peak measured at 14 from doubly ionized
N2 and the ion current peak measured at 28 and 16 as CO2 dis-
sociates and ionizes into CO+and O +. Knowledge of the doubly
ionized to singly ionized current ratios and the cracking patterns al-
lows the determination of the amount that each species contributes
to a particular peak, which is necessary for calculating the correct
composition of the gas as it enters the mass spectrometer. These

ratios are specific to the SUMS instrument, and the important ones
are listed in Table 1.

System Response Function

A change in gas pressure at the inlet is not sensed immediately by

the mass spectrometer because a time lag response exists caused by
the enclosed volumes and tube lengths. During some time interval

when the descent rate of the Orbiter is fairly constant, the time

lag can also be expressed as an altitude shift. Consideration of the

shift is most important when SUMS data must be combined with,

or compared to, other data. For example, to compare the SUMS
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Fig. 5 SUMS total pressure and transducer measurements.

ambient density predictions to the 1976 U.S. Standard Atmosphere, 4
it would be necessary to account for the system response time.

An electrical network analog was developed to predict the sensor

lag or response function of the SUMS system. The conductances of
the inlet tubing and the UAMS terminator were modeled as resistive

elements; the volumes of the system were modeled as capacitive el-

ements, and the time-dependent input pressure was modeled as an

applied voltage. The coefficients of the solutions to the differential

equations describing the electrical network model were obtained

from a series of static and dynamic calibration laboratory tests of
the flight equipment. 2 A volume that represents the tubing forward of

the inlet system was used during the tests. However, this laboratory
setup did not physically include the two flight pressure transducers

that are connected in parallel to the inlet line. Attempts to apply

the electrical analog model results for the system as flown were un-
successful because air, which was trapped behind the filter of each

pressure transducer, slowly leaked into the system. This effect could

not be satisfactorily adapted to the preflight system response model

results because of the lack of knowledge of the characteristics of the

phenomena. Therefore, the electrical analog model proved to be of

little practical use for postflight estimates of the time lags. However,

pressure transducer flight data did allow an experimental determi-

nation of the pressure lag for the range valve closed condition.

Estimate of the System Response

SUMS Time Lag
The SUMS measurement time lag can be determined from the

pressure transducer output for the range valve closed condition.

The correlation with the pressure measurements requires the cal-

culation of total pressure using the mass spectrometer data. SUMS

total pressure can be calculated by summing the individual species
measurements as follows:

/! i

i

(l)

Figure 5a shows the results of the calculations from the data taken

on STS-35 for the range valve closed condition using species N2,

02, CO2, At, and NO. Range valve closure occurs at 108 km, and
the tubing system evacuation process is clearly observed in Fig. 5a.

Included in Fig. 5a are the pressure transducer data over the same al-

titude interval. At these lower altitudes, pressure changes are rapidly

transmitted through the tubing, but compositional changes are de-

layed. It would be expected, therefore, that the pressure transducer
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Fig. 7 Comparison of transducer data with SUMS total pressure mea-
surements corrected for value closure transient and time lag.

measurements are nearly instantaneous and that the lag between the
mass spectrometer measurements and pressure transducer measure-

ments represents the total lag of the mass spectrometer system. An

apparent 0.2 km lag (1.5 s) is seen in Fig. 5a at the lower altitudes.

Figure 5b shows the improved results, particularly below 95 kin, af-

ter a 0.2 km upward altitude shift is applied to the SUMS data. This

shift is based on the measured total pressure referenced to the start

of the scan time. The individual ion currents have been interpolated
to this common time.

Leak Switch Transient

The comparison between the pressure data and the mass spec-

trometer data at altitudes beyond the data transmission gap (above
97 krn) does not compare well in Fig. 5b. The main difference is
caused by the remnants of gas trapped in the tubing after the leak

switch. Removing this transient requires an application of the pump-
down characteristics of the system.

After the range valve closes, gas remains in the tubing and requires
some time before it is pumped from the system. SUMS measures this
gas in addition to the fresh gas that is sampled from the atmosphere.
As a result, the data obtained after the range valve closes contains
a decaying pressure transient, as shown in Fig. 6 for the nitrogen
component. This transient pressure drop can be estimated by ob-
serving the system pump-down characteristics after the inlet valve
closes, and no more external gas enters the system. By subtracting
the percent drop per measurement time interval in the pump-down
region, the transient can be removed from each of the species, and

a corrected data set can be obtained. This correction can be applied
to the data shown in Fig. 5b to obtain an improved measurement,
particularly for altitudes above 95 km. When this effect is removed,

excellent agreement is noted with the pressure transducer data, as
shown in Fig. 7.

Freestream Density Determination
Equilibrated Pressure Coefficient

In flight, the total surface pressure measured at the SUMS inlet
tube is higher than the freestream dynamic pressure. 5'6 Inside the
tube, the gas pressure quickly drops as it equilibrates to the wall tem-

perature of the inlet tube. To obtain information about the ambient
atmospheric conditions from the SUMS instrument, it is necessary
to determine the relationship between the freestream pressure and
the inlet tube equilibrated pressure, which is subsequently measured
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by the mass spectrometer. The approach involves a model of the

flowfield and a model of the gas behavior in the tube near the en-

trance of the inlet orifice. 7 Results from a theoretical model using
direct simulation Monte Carlo (DSMC) calculations were devel-

oped specifically for the SUMS instrument s so that the equilibrated

pressure P_ could be related to the freestream dynamic pressure by
the equilibrated pressure coefficient, which is defined as

P, P_
- - (2)

(Cp)e 1/2pV2 q_o

The (CpL values used in this analysis are shown as a function of P_

in Fig. 8. The data from Ref. 8 are shown in the figure. Also shown

in Fig. 8 is a curve derived from a combination of pressure and

accelerometer flight data. The higher altitude (Cp)_ data developed
for the SUMS instrument did not extend to the lowest measurement

altitudes. For this reason, an experimental pressure coefficient was

developed based on pressures measured by the pressure transduc-

ers, accelerations measured by the high-resolution accelerometer

package (HiRAP), and aerodynamic coefficients inferred from pre-
vious HiRAP flights. 9 The experimental pressure coefficient is the

product of a flowfield coefficient ratio that relates surface pressure
to freestream dynamic pressure and an inlet coefficient ratio that

relates equilibrated internal pressure to surface pressure• That is,

P,P,
(CpL - (3)

qoo P_

As continuum conditions are approached during re-entry, the
flowfield coefficient ratio decreases, while the inlet coefficient ratio

rapidly increases. Results of a seventh order curve fit to the flight data
are shown for (Cp)¢ in Fig. 8. This curve is used for pressures greater

than about 10 N/m 2. At lower pressures, a curve fit (not shown) to

the Moss and Bird s data is used. In Fig. 8, the coefficient increases

steadily with pressure until reaching a value of about 1.5, from which
it gradually declines to about 1.41, the modified Newtonian limit•

The experimental pressure coefficient extends the DSMC analytic
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Fig. 10 Comparison of the SUMS measured atmospheric density to
the U.S. 1976 Standard Atmosphere Model.

model to higher pressures, but for pressures above 100 N/m 2, the

experimental coefficient exceeds the theoretical limit of 1.41, which

is calculated using the modified Newtonian approach for continuum
hypersonic conditions. An explanation for this result is that when

using any common criteria for continuum conditions, such as the

ratio of molecular mean-free-path to characteristic length, the inlet
coefficient reaches a continuum state before the flowfield coeffi-

cient.

A rearrangement of Eq. (2) can be applied to the SUMS equi-

librated pressure measurements to allow the calculation of the dy-

namic pressure and, subsequently, the freestream density. That is,
given P_ as measured by the SUMS (or a pressure transducer) and

the (Cp)_ model (Fig. 8), the dynamic pressure is simply the ratio

of these quantities. With dynamic pressure, the atmospheric den-

sity can be calculated because velocity is known from the trajectory
reconstruction process. _o

Density Results
SUMS data were gathered from orbital altitudes (_ 346 kin) down

to approximately 87 km where the inlet valve closed. Figure 9 shows

the altitude profile as flown during a portion of the STS-35 reentry
mission. SUMS spectra scans are transmitted continuously from de-
orbit altitude, but, for this flight, the SUMS signal came out of the

background at about 180 km (labeled "Measurable Signal"). The

delay in the signal emerging from the background signal was unex-
pected, and later investigations identified the cause to be trapped gas
behind the filters of the pressure transducers. Details of the back-

ground signal are discussed later. Thus, during re-entry, SUMS data
covered an interval of about 18 min from approximately 180 to 87
kin. During this time interval, the Orbiter was at an angle-of-attack
of about 40 deg, traveling at a speed of about 7500 m/s. Figure 9 also
shows the altitude location of the range valve closure that switches
leaks (labeled "Range Valve Closed") and allows measurements
deeper into the atmosphere.

The density has been calculated from the mass spectrometer spec-
tra using the method outlined in the previous section, and is shown

in Fig. 10. Figure 10a shows a direct comparison with the density
from the 1976 U.S. Standard Atmosphere model. 4 Figure 10b shows
the ratio of the SUMS measurements to the corresponding density
obtained from the reference model; that is, the 1976 U.S. Standard.

At altitudes less than 115 kin, the SUMS data compare well with
the model but exhibit density oscillations similiar to those observed

in accelerometry results from previous flights. Ij Figure 10b shows
an altitude wavelength of about 17 km that falls within earlier ac-
celerometry measurements of between 15 to 40 kin. At altitudes

higher than 115 kin, however, the data obviously are being influ-
enced by the background gas.
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Fig. 11 Comparison of fuel dump-induced spectra data.

System Background
The background levels of the spectra taken at orbital altitudes were

extraordinarily high. An extensive investigation of the equipment
after the flight revealed that ground composition air was trapped be-

hind the filter within each pressure transducer connected in parallel
to the mass spectrometer. Most of the trapped air escaped quickly
as the Shuttle attained orbit. However, once in orbit, the pressure
dropped, and free molecule flow conditions were reached causing
the effective conductivity of the filters to drop to only a fraction of

that at higher pressures. Under these conditions, the remaining air

leaked continuously into the inlet tubing producing a small back-

ground pressure source while on orbit• The pressure was nearly
constant at about 0.08 N/m 2, and the percent composition (N2, 02,

Ar, and CO2) matched sea-level air.

Figure I0 shows the effect of the trapped air background source on

the density calculations• Above about 120 km, an exponential-like

freestream density decrease is expected, but the density is unreason-

ably high at a near constant level. Indeed, the density measurements
eventually exceed a standard atmosphere by a factor of more than

10. A similar unreasonable density result occurs when the measure-
ments are corrected by simply subtracting a constant background.

Only by subtracting a semi-empirical variable background pressure

can a reasonable behavior of density variation be obtained. Based on

these results, it is concluded that the background pressure during the

high-altitude measurements varies in a manner that requires further

study of the conductances of the pressure filter before a reliable back-

ground model can be established. For this reason, the high-altitude

data are not reliable. Below about 120 kin, the pressure of the exter-

nal gas rises high enough that the background source is no longer

a contributing factor, and reliable results can be obtained. A back-
ground source pressure of 0.08 N/m z would lead to measurement

errors of approximately 25, 7, and 1% at altitudes of approximately

120, ! 10, and 100 km, respectively. However, as the pressure in the
tube rises, the conductance of the transducer filter that is trapping

the gas changes, and at about 120 km, the apparent background
pressure is less than 0.01 N/m z, and errors are well within the 3%

instrument error.

Fuel Dump Analysis

During a period of about 120 s, as the Orbiter descended through
320 km, pulses were observed in the SUMS spectra data for some
of the species. Upon a closer examination of the HiRAP 9 data on

0.6 " _-_v,-._-,,,-_ _x 4, _ ,Q

04
\.

02

350 300 ZS0 ZOO I 50

Altitude, km

a) Ratio of measured 16 to 32 ion current
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Fig. 12 Ratios of ion currents of peak 16.

STS-35, it was clear that the spectra were affected by the ingestion

of gas from the forward fuselage fuel dump of methylhydrazine

(CH3HN2H2). Figure I 1a shows the Orbiter × body axis accelerom-

eter data taken during re-entry. At about 18,300 s GMT, the HiRAP

sensor detected a large (600 _g) x-axis disturbance that was traced

to the forward fuselage fuel dump prior to the entry interface. An

examination of the spectra data was made to determine if the fuel
gas contaminants altered interpretation of the data at lower alti-

tudes. Figure 1 Ib shows the corresponding ion currents measured

by SUMS for some selected species during the fuel dump time

period. Most noticeable is the large peak at 15 ainu/e-, which is

assumed to be the methyl radical, CH3. Both the methylhydrazine

at 46 amu/e- and HN2H2 (i.e., a free radical resulting from CH3

splitting from methylhydrazine) at 31 amu/e- show no appreciable

increases and are not shown in Fig. 1lb• Similarly, both the water

at 18 ainu/e- and the OH at 17 ainu/e- show no peak,

The remaining species (Nz, O2, CO2, Ar, and O) all show in-

creases in varying amounts. Nitrogen (28 amu/e-) shows a peak that

could possibly be caused by a decomposition product of methylhy-

drazine or could be swept from the system walls. Ion peaks appear at

both 32 and 16, but the 16 peak relative to its predump background

readings is much larger than the 32 peak, compared to its back-

ground. If we examine the ratio I|6/132 , shown on Fig. 12a, then

this difference becomes evident. Because the ratio persists at a level

larger than the predump background and seems to decay toward it,

this result suggests that CH4 has been generated and is adhering to

the walls• Below about 180 kin, the ratio decreases abruptly as the

02 concentration increases.

The 16-ion peak can be predicted using the ionization and crack-

ing ratios in Table !, assuming that the 16-ion peak was produced

totally from 02 (32) and CO2 (44). When It6 observed is divided

by It6 predicted using this assumption, a huge peak appears at the

time of the dump as seen in Fig. 12b. The fact that this ratio is much

larger than unity demonstrates that the 16 peak is not coming solely
from O_ and CO2.

Figure 13 shows the ratio of 1_4measured to I_4 predicted, assum-

ing lz,=predicted comes from doubly ionized Nz and from doubly

ionized CO, which comes from CO2. The ratio is near unity through-

out, except for a small drop at the time of the fuel dump, as can be

seen in Fig. 13. This suggests that CO rises in the system slightly af-

ter the fuel dump over that produced from CO2 fractionation, but is

pumped from the system readily• Based upon the preceding analysis,
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Fig. 14 Comparison of the SUMS measurements to the 1976 U.S. Stan-
dard Atmosphere Model.

the spectra after the fuel dump showed that no significant perma-

nent changes occurred due to the ingestion of the fuel gas into the
system.

Chemistry Considerations

It is well known _2that high temperature flow phenomena at lower

altitudes cause chemical reactions that change the local undisturbed

atmospheric composition. Thus, it is expected that the composition

measured by SUMS differs from the composition near the orifice

entrance and is different from the ambient atmosphere. It is pos-

sible to gain some insights into the behavior of the gas compo-

sition near the Orbiter surface at the onset of aerodynamic heat-

ing. Mass spectrometer species data provide more information than

a simple pressure transducer, but the information is not complete

because the behavior of atomic oxygen (and other highly reac-

tive species) is totally masked by a closed source system, such as
SUMS.

The mole fraction Fi for species i in a gas mixture containing n

species can be calculated using the equation,

F,=y_ P'
,, PJ j = 1,2,.. n (4)

where Pi is the partial pressure of species i, and the various P./

represent the partial pressures of the n gases measured by the mass
spectrometer. The mole fractions for CO2, 02, and N2 are shown as

a function of altitude in Fig. 14a. Together with Ar, which remains

constant at approximately 1%, the partial pressures of these species

combine to account for almost all of the pressure measured by the
mass spectrometer on STS-35. For reference, Fig. 14b is a graph of

the mole fractions of the ambient atmosphere based upon the 1976

U.S. Standard Atmosphere model. For these calculations, atomic
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Fig. 15 Change in pressure due to chemistry associated with initial
aerodynamic heating during STS-35 re-entry.

oxygen is combined with 02 to represent the total number of oxy-
gen molecules available to the mass spectrometer before flowfield

chemistry. That is, all of the atomic oxygen that does not react with

other elements, or is not adsorbed by the walls, combines to form 02
before it is measured by the mass spectrometer. As seen in Fig. 14a,

the mole fractions remain fairly constant to about 100 kin, similar to

expectations without flowfield chemistry. At altitudes below abont

100 km, the 02 and N2 mole fractions begin to decrease and the

mole fraction of CO2 begins to increase. Because CO,, concenl, ra-

tion rapidly increases, chemistry caused by aerodynamic heatin_'_ has
begun) 3 There are at least two sources of carbon: one is the carbon

in the steel tubing; and the other is the Orbiter's surface chin panel
and nose cap, which are made of coated carbon-carbon ma.terials.

The exact method for the production of CO2 is not known, but a pos-
sible mechanism is that the heated carbon-carbon chin panels near

the Orbiter's nose region interact with oxygen to produce a mixture

of C, CO, and CO2. This mixture then reacts with aton-dc oxygen
adsorbed to the walls of the inlet tubing and produces alvnost exclu-

sively CO2 before being measured by the mass spectrometer. The

possibility that some of the 44 ainu peak was due to si'_icon monox-

ide, SiO, was considered, but, because of the extrem ely low vapor

pressure of SiO at the tube temperature (about 12°C), extremely
little gas would reach the mass spectrometer.

Source/Sink Estimates

The change in partial pressure of species i, r,, caused by chemistry

sources or sinks can be estimated using Eq. (43 by letting

P; = P, + r, (5)

where P_ is the partial pressure of species i, if there were no aero-

dynamic heating, and P/is the altered partial pressure of species i

caused by aerodynamic heating (P/is measured by the mass spec-
trometer). The values of r_ can be solved by combining Eq. (5) with

Eq. (4) and considering the mole fractions prior to aerodynamic

heating as constants; that is, similar to Fig. 14b. Assuming that N2

undergoes no significant chemical changes due to initial heating _

results in four independent equations and four unknowns for a gas

consisting of CO2, 02, and N2. The four unknowns are the pressures

Pco2 and Po2 (both without chemistry changes), and the pressure

changes rco_ and ro_ at any altitude. The results from the solution

of these equations, as a function of altitude, are shown in Fig. 15.

The results, expressed as percentages, show tha_: the production of
CO2 is significant; over 20% of the gas measured at lower altitudes

is CO2. Concurrently, at this altitude, oxygen is being depleted by
about 7% of the total gas sampled, which represents nearly half of
the oxygen measured.

It is worth reiterating that the actual chemical composition at

the orifice entrance is probably different becarase of the presence

of atomic oxygen. At altitudes near 100 kin, the standard atmo-

sphere model predicts an ambient composition containing about

10% atomic oxygen, O. Any molecular oxygen, 02, dissociation in

the shock/boundary layer would produce additi.onal atomic oxygen,

but, as expected, atomic oxygen was not measured at any altitude

during the SUMS experiment. This result suggests that O readily
combined with carbon and other molecules before it was measured.
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Summary
TheSUMSexperimenthasprovidedpartial pressure measure-

ments in the altitude range from 180 to 87 km during STS-35 re-

entry. However, above about 115 km altitude, the measurements are

contaminated with sea-level composition air. The source of this con-

tamination was identified as a slow release of gas trapped behind

pressure transducer filters that were connected in parallel to the mass

spectrometer. Below about 1 i 5 km, as the Orbiter surface pressure

rises to values that are much larger than the trapped gas source, the

sum of the SUMS partial pressure measurements correlate well with

available local pressure transducer measurements. The freestream
density in the rarefied-flow regime has also been calculated from

the SUMS measurements. The procedure involved using an ana-

lyrical/empirical model for the pressure coefficient at the SUMS

orifice. The SUMS density measurements corroborate earlier ac-

celerometer measurements that indicate density waves exist in the
upper atmosphere relative to a Standard Atmosphere 4 model with

vertical wavelengths of 15-40 km, At 320 kin, the SUMS registered
the effects of the gas resulting from the Orbiter forward fuselage fuel

dump. Examination of the spectra in this altitude region showed a

large 15 amu ion current peak transient, probably CH3, along with

other species, but no significant permanent changes occurred be-

cause of the ingestion of the fuel gas into the system. The initial

effects on gas composition because of aerodynamic heating were

observed beginning at about 100 kin. The production of CO2 and

the corresponding depletion of Oz are clearly seen as the reactive

gases from the flowfield, near the surface, react with the abundant

carbon from the carbon--carbon nose and chin panels and, subse-

quently, with some of the atomic oxygen adhering to the tubing
walls. It is estimated that at the lowest measurement altitude of

SUMS (87 km), about 20% of the total pressure comes from CO2.
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